ROLE OF MOESIN ABNORMALITIES IN NK/T CELL LYMPHOMAGENESIS

FUNCTIONAL ANALYSIS & IMPLICATION IN TUMOR IMMUNE ESCAPE

Amira MAROUF, *MD*, *PhD Student* **Supervisor**: Dr Lucile COURONNÉ

« Laboratory of molecular mechanisms of hematological disorders and therapeutic implications » Director: Pr Olivier Hermine

Institut national de la santé et de la recherche médicale

- Rare subset of peripheral T/NK lymphoma (10 %)
- Extranodal localization, most common presentation: ORL involvement
- COO: NK lymphocytes (40%) or T lymphocytes (60%)
- cCD3+, CD2+, CD5-, CD7+, CD56+, CD4-, CD8-
- Markers of cytotoxicity: Perforin+, GzmB+
- EBV positive (EBER +) in 100% cases

Source: Bruce A. Chabner, Dan L. Longo: Harrison's Manual of Oncology, 2nd Edition, www.hemonc.mhmedical.com Copyright © McGraw-Hill Education. All rights reserved.

Associated with poor prognosis

- Median OS 36 months
- Median PFS 57 months

Fox, Lancet Haematology, 2020 Qi, Blood advances, 2020 He, Ann. Of Translational Med., 2021 Wang, Leukemia, 2021

GENERALITIES ON NK/T LYMPHOMA (ENKTCL)

Fox, Lancet Haematology, 2020 Qi, Blood advances, 2020 He, Ann. Of Translational Med., 2021 Wang, Leukemia, 2021

- Associated with poor prognosis
- New targeted therapies & Immunotherapy under clinical evaluation
 - Anti-CD30 antibodies
 - Anti-CD38 antibodies
 - HDAC inhibitors
 - Checkpoint inhibitors: anti-PDI
 - CTL anti-EBV

Table 5.	Checkpoint-inhibitors in NKTL.				
N Subjects		Response	Ref.		
7	Pembrolizumab	5 CR/2 PR	[<mark>98</mark>]		
7		2 CR/2 PR	[<mark>99</mark>]		
14		5 CR/1 PR	[100]		
3	Nivolumab	1 CR	[101]		
28	Sintilimab	4 CR/15 PR	[103]		
37	Sintilimab/Chidamide	16 CR/5 PR	[116]		
6	Sintilimab/Chemotherapy	2 CR/4 PR	[102]		
29	CS-001	7 CR/2 PR	[104]		
21	Avelumab	5 CR/3 PR	[105]		
CR complete remission, PR partial remission.					

Jaccard & Hermine, Blood, 2017 Fox, Lancet Haematology, 2020 Qi, Blood advances, 2020 He, Ann. Of Translational Med., 2021 Wang, Leukemia, 2021

Upper aerodigestive tract, e.g. tonsil, nasopharynx

Upper aerodigestive tract, e.g. tonsil, nasopharynx

Upper aerodigestive tract, e.g. tonsil, nasopharynx

IDENTIFICATION OF MOLECULAR ABNORMALITIES INVOLVED IN ENKTCL LYMPHOMAGENESIS

- ✓ French and Asian samples
- ✓ WES data then targeted sequencing
- ✓ Collaboration: Pr K Kataoka, Pr S Ogawa(Tokyo)

MOLECULAR ONCOGENESIS

Most frequently mutated genes in ENKTCL

STAT3	Related to JAK/STAT activation	14.2% [4-26]
DDX3X	RNA helicase	13.8% [4-21]
TP53	Tumor suppressor gene	10.4% [5-16]
BCOR	Epigenetic modifier	7.7% [2.8-32]

Küçük, Nat Commun, 2015 Jiang , Nat Genet, 2015 Dobashi, Gene Chromosome Cancer, 2016 Lee, Oncotarget, 2015 Song, Blood, 2018 Wen, Nature Med, 2018 Li, Nature Com, 2019 Montes-Mojarro, Mod Pathol, 2020 Xiong, Cancer Cell, 2020 Lim, Leukemia, 2020 Polprasert, Leukemia& Lymphoma, 2021

De Mel, J Hematol Oncol, 2019

GENETIC ALTERATIONS

MSN is one of the most altered genes in ENKTCL

Pr K Kataoka / Pr S Ogawa

GENETIC ALTERATIONS

MSN mutations/ deletions are not observed in other lymphoma subsets

- Recurrent and specific alterations in ENKTCL (TCGA)
- No association neither exclusion of MSN mutations with other genes

GENETIC ALTERATIONS

Mutations

- Mutations along the gene
- Mainly inactivating

Deletions

- MSN gene is located on X chromosome
- MSN^{KO} by focal deletion

Inactivating mutations or focal deletions leads to MSN loss of function > MSN: tumor suppressor gene ?

Pr K Kataoka / Pr S Ogawa

MOESIN

Physiological function

- ERM family
- Cytoskeleton protein
- Ubiquitous protein, high expression in NK lineage
- Multifunction protein: cell cortex maintenance, signal transduction, proliferation, survival, trafficking, migration and adherence when phosphorylated

MSN play a crucial role in intracellular trafficking

Barrero-Villar, J Cell Sci, 2009 Clucas & Valderrama, J Cell Sci, 2015 Ponuwei, J Biomed Sci. 2016 Garcia-Ortiz, Int J Mol Sci, 2020

MOESIN

Immunological function

- Role in immune synapse formation
- Role in viral synapse HIV1/HSV1
- Germline inactivating mutations of MSN have been reported in 7 patients with X-linked primary immunodeficiency.

Delon, Immunological review, 2002 Barrero-Villar, J Cell Sci, 2009 Henning, Virology, 2011 Parameswaran & Gupta Immunol Rev, 2013 Clucas & Valderrama, J Cell Sci, 2015 Lagresle-Peyrou, JACI, 2016 Ponuwei, J Biomed Sci. 2016 Garcia-Ortiz, Int J Mol Sci, 2020

ROLE OF MSN IN LYMPHOMAGENESIS

Upper aerodigestive tract, e.g. tonsil, nasopharynx

ROLE OF MSN IN LYMPHOMAGENESIS

Upper aerodigestive tract, e.g. tonsil, nasopharynx

FUNCTIONAL ANALYSIS OF *MSN* ABNORMALITIES

Impact on cell transformation and proliferation

- Proliferation assay
- Deregulated pathways (RNAsequencing and validation assays)

MSN & CELL PROLIFERATION

Proliferation advantage in case of MSN inactivation

MSN & CELL PROLIFERATION

Lower rate of proliferation in case of recovered MSN expression

MSN & CELL SIGNALING

RNAseq YT1 *MSN*^{KO} & *MSN*⁺

Main upregulated genes in absence of MSN

Gene Name	P adjusted value
TNFRSF8 = CD30 (member TNF receptor superfamily)	2,18488E-08
MCM4	1,52905E-07
МҮВ	1,02545E-06
NFKBIA = <mark>ΙΚΒ</mark> α	3,80226E-05
MCM5	5,07323E-05
MCM7	5,07323E-05
MCM2	7,51259E-05

Main pathways upregulated in absence of MSN

- NFkB
- NOTCH
- MYC
- mTORC1

Heatmap genes differentially expressed FDR5%

NFKB PATHWAY

YT1 MSN-YT1 MSN+

YT1 MSN-YT1 MSN+

60

MSN inactivation in YT1 cells is associated with an increase of IkBa degradation and higher level of phosphoP65 expression upon TNFa stimulation suggesting a canonical activation of NFkB

Representative of 3 experiments

 \succ Significant increase of p65 translocation into the nucleus after TNFa stimulation in MSN^{KO} cells

YT1 MSN+

Assessment of NFkB inhibition

> MSN^{KO} cells are more sensitive to ML120B (IKK complex inhibitor) as compared to MSN⁺ cells

MSN & NOTCH PATHWAY

- Low basal activation of NOTCH pathway in YT1 cell line
- Need co-culture on OP9-DL1 (NOTCH ligand)

YT1 MSN-

MSN & NOTCH PATHWAY

- Low basal activation of NOTCH pathway in YT1 cell line
- Need co-culture on OP9-DL1 (NOTCH ligand)

MSN & NOTCH PATHWAY

- Low basal activation of NOTCH pathway in YT1 cell line
- Need co-culture on OP9-DL1 (NOTCH ligand)

NOTCH pathway is upregulated in case of MSN inactivation as compared to MSN⁺ cells after co culture with OP9-DL1

JQ1 (200 nM) H108 ê confluence ratio (normalized to 80-+ YT1 MSN+ YT1 MSN-60-**40** n=4 20 50 100 150 A pLVX Time (hours)

Assessment of MYC inhibition

÷

JQ1 200nM MSN

ğ

IMMUNE ESCAPE

Investigate the role of MSN inactivation in ENKTCL immune evasion ✓ Demonstrate that *MSN* loss of function could contribute to immune escape.

✓ Mechanisms involved ?

- PDL1 and PDL2 expression
- Immune synapse stability
- Other ?

- ENKTCL = EBV+ tumor, affects patients without immune deficiency
- Mechanisms possibly involved in immune evasion :
 - **EBV Epitope alterations** (LMP1 & LMP2A) => less immunogenicity of EBV strains

(Demachi-Okamura, Eur J Immunol, 2006; Nagamine, Virus Genes, 2007; Nagamine, Intervirology, 2007; Wang, J Gen Virol, 2010, Palser, J Virol 2015)

PD-L1 upregulation induced by EBV (LMP1) and JAK/STAT activation (STAT3)

(Bi, J Hematol Oncol, 2016; Song, Blood, 2018)

> Mutations **in immunosurveillance genes** (30% of the patients)

(Polprasert, Leukemia lymphoma, 2020)

MSN has been described as an essential gene in target cells for T mediated cytotoxicity

(Patel, Nature, 2017)

Identification of essential genes for cancer immunotherapy

Shashank J. Patel^{1,2}*, Neville E. Sanjana^{3,4}*, Rigel J. Kishton¹, Arash Eidizadeh¹, Suman K. Vodnala¹, Maggie Cam¹, Jared J. Gartner¹, Li Jia¹, Seth M. Steinberg¹, Tori N. Yamamoto^{1,5}, Anand S. Merchant¹, Gautam U. Mehta¹, Anna Chichura¹, Ophir Shalem⁶, Eric Tran¹, Robert Eil¹, Madhusudhanan Sukumar¹, Eva Perez Guijarro¹, Chi-Ping Day¹, Paul Robbins¹, Steve Feldman¹, Glenn Merlino¹, Feng Zhang^{7,8} & Nicholas P. Restifo^{1,9}

> MSN loss of function may be involved in resistance to immunotherapy?

MSN has been described as an essential gene in target cells for T mediated cytotoxicity

(Patel, Nature, 2017)

TSIM subtype (associated with antigen presentation, PD1 expression and JAK STAT activation): less represented in MSN^{low} group

> MSN loss of function may be involved in immune evasion

MOESIN AS A CRUCIAL GENE REQUIRED FOR ANTI-TUMOUR IMMUNE RESPONSE ?

MSN has been described as an essential gene in target cells for T mediated cytotoxicity

(Patel, Nature, 2017)

> TSIM subtype (associated with antigen presentation, PD1 expression and JAK STAT activation) : less represented in MSN^{low} group

RNA seq data (n=38)

- MSN inactivation is associated with lower cytolytic activity (Bulk++)
- ✓ GSEA of FcgR mediated phagocytosis and TCR pathway in MSN^{high} patients \rightarrow Suggests downregulation of those pathways in case of MSN loss of function

 \rightarrow signature from tumor compartment or TME ?

Is MSN loss of function associated with ineffective immune response ?

ANALYZE THE RESISTANCE TO IMMUNE-MEDIATED KILLING

ANALYZE THE RESISTANCE TO IMMUNE-MEDIATED KILLING

Trend for lower sensitivity to lysis in MSN^{KO} cells
Very high % of lysis in this model

ANALYZE THE RESISTANCE TO IMMUNE-MEDIATED KILLING

Focus on the model based on AUTOLOGOUS RESPONSE (MHC-restricted and antigen-specific)

- In *MSN^{KO}* target cells:
 - CMH expression (Flow cytometry)
 - Immune synapse formation +/- stability (Amnis Imagestream)
 - PD-L1/PD-L2 expression (Flow cytometry)

MSN inactivation may play a crucial role in NK/T lymphomagenesis, by disturbing antitumor immune response

Identification of prognostic factors will be useful for patients' stratification in the era of personalized medicine

Detection of new predictive biomarkers of response to antiPDI therapy will allow to optimize use of immune checkpoint blockade in clinical practice

Characterization of immune escape mechanisms opens promising perspectives in the understanding of NKCTL pathogenesis and its treatment

AKNOWLEDGMENTS

INSERM U1163-team Hermine

Olivier Hermine Lucile Couronné Manon Vavasseur Marie Bouillié Mirjana Weimershaus Michael Dussiot Elia Colin

Hervé Souchet Thiago Trovati

Genomics and and Bioinformatics de la santé et de la recherche médicale

Necke

Julie Bruneau Thierry Molina Danielle Canioni

Gefluc

INSERM U955, Mondor Institute

Philippe Gaulard Virginie Fataccioli

Janssen Horizon

> Hematology department, **CHU Limoges** Sammara Chaubard Arnaud Jaccard David Lavergne

RECHERCHE IMMUNO-ONCOLOGIE

THE JAPANESE

SOCIETY OF HEMATOLOGY

Leila Maouche Laura Polivka

Biological Hematology, Necker Hospital

Guillaume Andrieu Agata Cieslak Vahid Asnafi

Bioinformatics CALYM / LYSARC

Imagine Institute

Emmanuel Martin

Sylvain Latour

Erika Brunet Isabelle André

Aude Magerus-Chatinet

Platforms, Imagine Institute

Christine Bole-Feysot

Patrick Nitschké

Bruno Tesson Cécile Laurent

INEM Peter Van Edert **David Gross**

FONDATION TOURRE

INSERM 1052 CNRS 5286, Lyon **Emmanuel Bachy**

Consortium Ténomic

Collaborators in Japan

Keisuke Kataoka (Tokyo) Kengo Takeuchi (Tokyo) Seishi Ogawa (Kyoto)

JSH