DES National d'Hématologie Clinique Hémopathies Ph positives 28 janvier 2022

Biologie des hémopathies à Ph+

Jean-Michel CAYUELA Laboratoire d'hématologie Hôpital Saint-Louis, Paris

Outlines

- Biology of CML, CML-BC , Ph+-ALLS
- Molecular diagnostics
- TKI resistance
 - BCR-ABL1 Tyrosine kinase domaine mutations
 - Detection of low level-TKD mutations by NGS

Translocation t(9;22)(q34;q11)

D'après Rowley JD. Nature 1973;243:290

D'après Shtivelman E. Nature 1985;**315**:550–4

interlinker

ABL1

cap

ABL1

Effets oncogénique de *BCR-ABL1* dans les cellules hématopoïétiques

BCR-ABL1 inhibitors

Competitive inhibitors of ATP

- Imatinib
- Nilotinib
- Dasatinib
- Bosutinib
- Ponatinib

Allosteric inhibitor - Asciminib

Willie A et al. Nature 2017, 543:733-7 Qiang W et al., Leukemia 2017, 31:2844-47

Chronic Myeloid Leukemia (CML)

Adapted from Jamieson CHM, Cancer Cell Dec. 2004:531

Prognostic impact of additional chromosomal abnormalities in newly diagnosed CP-CML

Experience of the German CML IV study

	Fréquence Out of 1151 <i>de novo CP-CML</i> N (%)	PFS / OS at 5 years %
t(9;22)(q34;q11)	1003 (87)	90 / 92
t(v;22)	69 (6)	81 / 87
ACAs	79 (6.9)	
-Y	38 (3.3)	88 / 91
major route*	16 (1.4)	50/53
minor route**	25 (2.2)	96/96

*Abnormalities the most frequently detected in advanced phases of CML : +der(22), +8, i(17)(q10), +19 **Abnormalities rarely detected in AP or BP of CML: t(3;12), t(4;6), t(2;16), t(1;21), t(15;17), inv16 ...

- ✓ « Major route ACAs » are associated with shorter PFS and OS
- « Minor route ACAs » aren't, but should be considered as warnings according to 2013 ELN recommandations

Prognostic impact of additional chromosomal abnormalities in newly diagnosed CP-CML

Experience of the German CML IV study

	High-risk ACA ELN 2020	OS at 5 years %
t(9;22)(q	: +8	0 / 92
t(v;22)	+Ph	31 / 87
ACAs	+19	
	-7/7q-	38 / 91
	11q23	50/53
	3q26.2	96/96
*Abnormalit **Abnormc	complex karyotypes	-8, i(17)(q10), +19 :(15;17), inv16
	Hochhaus H et al., Leukemia 2020 34, 966–984	

✓ « Major route ACAS » are associated with shorter PFS and US

 « Minor route ACAs » aren't, but should be considered as warnings according to 2013 ELN recommandations

Integrative genomics in CML

- 65 CML patients treated with 1st line TKI
 - 46 CP
 - 19 durable MMR (median FU 34 mths)
 - 27 poor outcome (26 developed BC after a median of 6 mths)
 - 39 BC, including 20 from the poor outcome series
- Sequencing methods
 - WES: Whole-Exome (DNA) in 38/65 pts
 - RNA-Seq: Whole-transcriptome (RNA) in 59/65 pts
 - Comparison to paired non-tumoral samples

Relevant variants at diagnosis

Nelevant variants at diagnosis in chronic phase for patients deated with mist-line TN

+ Patients with RNA-Seq alone

Characteristics of variants detected in 3 or more patients at diagnosis in chronic physed S et al., Blood 2018, 132:948-961

Relevant variants at diagnosis

✓ Detected in 23/46 (50%) patients

 \checkmark A majority in poor outcome pts

• 4/19 (21%) vs 19/27 (70%)

✓ Occured in cancer genes

- ASXL1. Mutated in 9 pts. 6 developed BC and 2 achieved MMR. Longer time to BC (21 vs 4.5 mths)
 - IKZF1. Mutated in 6 pts. 5 developed LBC
 - SETD1B. Mutated in 3 pts. 3 developed BC
 - ✓ More frequently found in bad responders
 - No MCyR: 8/8; MCyR: 6/9; CCyR: 2/6

✓ More frequently found in high risk patients

• High Sokal: 6/7; Int.: 5/12; low: 5/18

Ko TK et al; Blood 2020, 135:2337-2353

CP to BC progression model

Ko TK et al; Blood 2020, 135:2337-2353

Main copy-number variations in BCR-ABL + ALLs

Locus	Géne	Enfants	Adultes	Total (%)
		n = 21	N = 22	N = 43
7p12.2	IKZF1	16	20	36 (84)
9p21	CDKN2A	10	13	23 (53)
9p13.3	PAX5	10	12	22 (51)
20p12.2	C20orf94	7	3	10 (23)
13q14.2	RB1	4	4	8 (19)
5q14.3	MEF2C	2	4	6 (14)
5q34	EBF1	3	3	6 (14)
12q22	BTG1	4	2	6 (14)
13q14	DLEU*	1	3	4 (9)
3p14.2	FHIT	2	2	4 (9)
12p13	ETV6	2	1	3 (7)

*mir16 and mir15

Mullighan et al., Nature 453:110, 2008

Deletion of CDKN2A

Metabolic gatekeeper function of Blymphoid transcription factors

1. Metabolic gatekeeper function of Leaven Nois Henswip wor fire 2019, 1942, 479, 483, i Experiment of the Protology 2017, 53: 156e -cell development and they oppose myeloid differentiation as an alternative lineage fate through repression of the myeloid transcription factor

3 steps model for oncogenesis of BCR-ABL+ ALLs

2. Deletion of CDKN2A/B/ARF locus

- Simultaneous inactivation of TS functions of P53 and Rb.
- B-precursor permissivity to BCR-ABL

3. Inactivation of IKZF1 and PAX5

- blockage of differentiation
- Suppression of the metabolic barrier towards transformation
- ✓ Pre-B ALL

Adapted from

Mullinghan et al., Genes & Dev 22:1411, 2008

Chan L and Muschen M, Nature 2017, 542:479-483; Experimental Hematology 2017,

Outlines

- Biology of CML, CML-BC , Ph+-ALLS
- Molecular diagnostics
- TKI resistance
 - BCR-ABL1 Tyrosine kinase domaine mutations
 - Detection of low level-TKD mutations by NGS

Morphological and genetic features

Detection of BCR-ABL1 at diagnosis

Burmeister et Reinhardt, 2008

Amplification des transcrits *BCR-ABL1* par RT-PCR

Cayuela JM Unpublished

Expression levels normalized for RNA quality and quantity

Gabert J et al., Leukemia 17, 2318-57, 2003 Beillard et al., Leukemia 17, 2474-86, 2003

International scale (IS)

 Achieving an MMR predicts a CML-specific survival close to 100% as disease progression is uncommun once this level of cytoreduction has been achieved

 Achieving a DMR is a prerequisite for discontinuing treatment

Monitoring

- Blood Cell Counts and differential cell counts every 2 weeks until CHR
- QPCR on blood cells expressed as BCR-ABL1% according to IS every 3 months, even after an MMR is achieved and confirmed, because close monitoring of molecular response is required to assess eligibility for treatment discontinuation
- Cytogenetics or FISH are not sufficiently sensitive to monitor response
 - Should be done with rare or atypical BCR-ABL transcripts that cannot be measured by QPCR
 - Treatment failure/resistance to exclude ACA
 - Progression to AP or BP
- Additional QPCR testing may be indicated if the kinetics of response are not clear, or if toxicity or intolerance cause dose interruptions or reductions
- BCR-ABL KD-mutations
 - Failure : mandatory before changing the treatement
 - Warning : necessary to guide the change in treatment, when decided
 - Intolerance/complications : if possible (BCR-ABL > 0,1%) in case of decision to change

Milestones for treating CML

Months

Adapted from Baccarani M et al., Blood 2013, 122:872-84

And Hochhaus H et al., Leukemia 2020 34, 966–984

Definition of DMR

International Scale

Cross NCP, Leukemia 2012, 26:2172-5 Baccarani M, Blood 2013, 122:872-84 Cross, Leukemia 2015, 29:999-1003 Hochhaus H et al., Leukemia 2020 34, 966–984

Outlines

- Biology of CML, CML-BC , Ph+-ALLS
- Molecular diagnostics
- TKI resistance
 - BCR-ABL1 Tyrosine kinase domaine mutations
 - Detection of low level-TKD mutations by NGS

Inihibiteurs compétitifs de l'ATP

- Imatinib
- Nilotinib
- Dasatinib
- Bosutinib
- Ponatinib

Inihibiteur allostérique - Asciminib

- Mutations d'aa du site de liaison myristoyl : A337V, P465S, V468F, C464W
- Mutation composite A337+M244V

Inihibiteurs compétitifs de l'ATP

- Imatinib
- Nilotinib
- Dasatinib
- Bosutinib
- Ponatinib

Inihibiteur allostérique - Asciminib

- Mutations d'aa du site de liaison myristoyl : A337V, P465S, V468F, C464W
- Mutation composite A337+M244V

Inihibiteurs compétitifs de l'ATP

- Imatinib
- Nilotinib
- Dasatinib
- Bosutinib
- Ponatinib

Inihibiteur allostérique - Asciminib

- Mutations d'aa du site de liaison myristoyl : A337V, P465S, V468F, C464W
- Mutation composite A337+M244V

Inihibiteurs compétitifs de l'ATP

- Imatinib
- Nilotinib
- Dasatinib
- Bosutinib
- Ponatinib

Inihibiteur allostérique - Asciminib

- Mutations d'aa du site de liaison myristoyl : A337V, P465S, V468F, C464W
- Mutation composite A337+M244V

TKD mutations and therapeutic options

Mutations	Therapeutic options
T315I	Ponatinib, HSCT, investigational drugs
T315A, F317L/V/I/C	Consider nilotinib, bosutinib or ponatinib rather than dasatinib
Y253H, E255K/V, F359V/C/I	Consider dasatinib, bosutinib or ponatinib rather than nilotinib
V299L	Consider nilotinib or ponatinib rather than dasatinib or bosutinib
Autres mutations	Clinical significance unclear: consider high-dose TKI, alternative TKI, HSCT, investigational drugs

Adapted from Soverini S, Blood 2011

NCCN 2017 Guidelines CML V1.2018

Dilution of BCR-ABL1 mRNA

BCR-ABL1 TKD amplification and Sanger Sequencing

Comparison between Sanger and NGS NEXT-in-CML study

Comparison between Sanger and NGS NEXT-in-CML study

	Patients positive for mutations by SS	Patients positive for mutations by NGS
First-line failure	13/57 (23)	27/57 (47)
First-line waming	7/68 (10)	23/68 (34)
Second-line failure	15/39 (38)	20/39 (51)
Second-line warning	6/37 (18)	17/37 (49)
Third-line failure	14/21 (67)	17/21 (80)
Third-line warning	1/7	3/7
Fourth-/fifth-line failure	4/7	4/7
Total	60/236 (25)	111/236 (47)

Soverini S et al., Blood 2020 135:534-541

Pour en apprendre d'avantage <u>https://www.thinktesttreat.com/</u>

